

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

МОДУЛЬ ПРЕОБРАЗОВАНИЯ ИНТЕРФЕЙСОВ МПИ-20 «RUBETEK»

Аппаратная версия: PWG rev.5 Программная версия: 2025.1.1 Версия документа: 2025-01-30

ООО «РУБЕТЕК РУС» 121205, г. Москва, территория инновационного центра «Сколково», Большой бульвар, д. 42/1 +7 495 120 80 36 / 8-800-777-53-73 support@rubetek.com / https://rubetek.com

Содержание

Описание и работа	1
1	4
Назначение	4
Технические характеристики	4
Внешний вид модуля	5
Внутреннее устройство модуля	5
Комплектность	6
Использование по назначению	6
Подготовка к использованию	6
Размещение модуля	6
Рекомендации по организации линий связи	7
Монтаж модуля	9
Световая индикация	9
Режим работы портов Ethernet	10
Подключение модуля к системе пожарной сигнализации	13
Настройка с использованием ПО Rubetek Инженер	14
Обновление ПО ПИ	19
Техническое обслуживание	20
Меры безопасности	20
Проверка работоспособности	20
Хранение	20
Транспортирование	20
Утилизация	21
Гарантия изготовителя	21
Сведения о рекламациях	21
Сведения о сертификации	21
Сведения о производителе	21
Сведения о поставщике	22
	Назначение

Введение

Настоящее руководство по эксплуатации предназначено для описания принципа работы, монтажа и эксплуатации модуля преобразования интерфейсов МПИ-20 «RUBETEK» (далее модуль).

Необходимо ознакомиться с изложенными в руководстве инструкциями перед тем, как подключать, настраивать, эксплуатировать или обслуживать модуль.

В данном руководстве описаны настройки, привязка и взаимодействие с ППК-02-250 версия прошивки 2024.12.1 и ППК-02-500 версия прошивки 2024.12.1.

Монтаж и эксплуатация модуля должны производиться техническим персоналом, изучившим настоящее руководство.

Список принятых сокращений:

- ПИ, МПИ-20 модуль преобразования интерфейсов МПИ-20;
- ОДС объединенная диспетчерская служба;
- ПК персональный компьютер;
- ПО программное обеспечение;
- ППК прибор приемно-контрольный;
- RA-30 повторитель интерфейсов.

1. Описание и работа

1.1. Назначение

Модуль преобразования интерфейсов МПИ-20 «RUBETEK» предназначен для диспетчеризации в системе автоматической пожарной сигнализации «RUBETEK». Модуль обеспечивает двухстороннюю связь и передачу данных с ППК, подключенных по интерфейсу CAN, в сеть Ethernet.

Функциональные возможности модуля:

- подключение объединенных по интерфейсу CAN адресных приемно-контрольных приборов к системам управления и мониторинга системы;
- конфигурирование по локальной сети при помощи программы Рубетек Инженер;
- светодиодная индикация обмена данными;
- резервирование всех каналов связи согласно СП 484.1311500.2020.
- Модуль выпускается в соответствии с ТУ 26.30.50-017-39653468-2022.

1.2. Технические характеристики

Таблица 1 – Основные параметры модуля

Параметр	Значение		
Напряжанна питания Р	основное: DC 24 ± 20%		
Папряжение питания, в	резервное: DC 24 ± 20%		
Ток потребления, А, не более	0,25		
Интерфейс связи	CAN, RS485, Ethernet		
Количество занимаемых адресных слотов	0		
Длина кабеля интерфейса CAN, м, не более	100		
Количество CAN интерфейсов, шт.	2		
Количество Ethernet интерфейсов, шт.	2		
Количество RS-485 интерфейсов, шт.	2		
Диапазон рабочих температур, °С	от -10 до +55		
Относительная влажность воздуха	до 93 % при +40°С		
Степень защиты корпуса	IP20		
Габариты, мм	$145 \times 90 \times 41$		
Масса, кг, не более	0,22		
Средний срок службы, лет	10		
Средняя наработка на отказ, ч	60000		
Вероятность безотказной работы за 1000 ч	0,98		

1.3. Внешний вид модуля

Рисунок 1 – Внешний вид модуля

1.4. Внутреннее устройство модуля

Рисунок 2 – Внутреннее устройство модуля

1.5. Комплектность

Таблица 2 – Комплектность модуля

Наименование	Количество, шт.	Примечание
Модуль преобразования интерфейсов	1	
МПИ-20 «RUBETEK»	1	
GSM-антенна	1	
Батарея CR1220	1	Предустановлена
Набор для крепления	1	
Паспорт	1	
Индивидуальная упаковка	1	
Групповая упаковка	1*	

*На отгрузочную партию.

2. Использование по назначению

2.1. Подготовка к использованию

ВАЖНО! Если модуль находился в условиях отрицательной температуры, необходимо выдержать его не менее 4 часов в упаковке при комнатной температуре (25 ± 10°C) для предотвращения конденсации влаги.

- 2.1.1 Подготовить рабочее место, вскрыть упаковку, убедиться, что комплектность модуля соответствует таблице 2.
- 2.1.2 Провести внешний осмотр, убедиться в отсутствии видимых механических повреждений (сколов, трещин, вмятин) и следов влаги.
- 2.2. Размещение модуля

При проектировании размещения модуля необходимо руководствоваться СП 484.1311500.2020 «Системы противопожарной защиты. Системы пожарной сигнализации и автоматизация систем противопожарной защиты. Нормы и правила проектирования».

Установка модуля допускается как на горизонтальную, так и на вертикальную поверхности. Выбор места расположения модуля должен осуществляться с учетом требований к максимальным длинам линий CAN и Ethernet.

Запрещено устанавливать расширитель:

на улице, в местах, где есть вероятность попадания воды на корпус блока;

• в помещении с повышенным содержанием пыли, взвесей строительных материалов в воздухе, паров и аэрозолей, вызывающих коррозию;

• вблизи высокочастотных коммуникаций, силовых кабелей, трасс.

При монтаже допускается использование:

- щиты типа ЩМП, ЩПС и аналогичные;
- корпуса навесные серий СЕ, ST (IP31-IP66) и аналогичные;

• шкафы климатические типа ШТВ, СПЕКТРОН-ТШ, СПЕКТРОН-ТШ-В и аналогичные.

2.3. Рекомендации по организации линий связи

ВАЖНО! Провода интерфейсов CAN и Ethernet рекомендуется размещать не ближе 1 м от силовых и высокочастотных кабелей.

В соответствии с требованиями СП 484.1311500.2020 организация резервного способа передачи данных производится путем параллельного дублирования всех каналов связи. При обрыве одного из каналов данные продолжат передаваться в соответствии со схемой подключения.

2.3.1. Организация Ethernet сети

Интерфейс Ethernet используется для приёма-передачи данных с CAN-линий в локальную сеть.

Для объединения нескольких преобразователей по сети Ethernet рекомендуется использовать коммутаторы, соответствующие следующим требованиям:

- ТР ТС 043/2017 Технический регламент Евразийского экономического союза «О требованиях к средствам обеспечения пожарной безопасности и пожаротушения»;

- Поддерживаемые стандарты: IEEE 802.3, IEEE 802.3u, IEEE 802.3X, IEEE 802.3ab, IEEE 802.3z;

- СП 484.1311500.2020 Свод правил. Системы противопожарной защиты Системы пожарной сигнализации и автоматизация систем противопожарной защиты. Нормы и правила проектирования.

Для реализации Ethernet линии рекомендуется использовать витую пару категории 5е с диаметром жилы не менее 0,5мм и исполнением по стандарту FRHF, FRLS или FRLSLTx.

Рисунок 3 – Принципиальная схема организации Ethernet сети (для ППК-02-250)

Рисунок 4 – Принципиальная схема организации Ethernet сети (для ППК-02-500)

2.3.2. Организация CAN сети

Интерфейс CAN используется для сбора данных с подключенных этажных ППК, а также передачу информации на ППК-пульт, и подразумевает структуру сети типа «шина».

ВАЖНО! Для реализации других типов подключения CAN интерфейса необходимо использовать повторители интерфейса RA-30 «RUBETEK».

На рисунках 5-6 показаны типовые схемы подключения CAN интерфейса для приборов приемно-контрольных ППК-02-250 и ППК-02-500 соответственно.

Рисунок 5 – Типовая схема подключения (для ППК-02-250)

Рисунок 6 – Типовая схема подключения (для ППК-02-500)

ВАЖНО! Подключение ППК к шине CAN может осуществляться отводами длиной не более 30 см.

Для предотвращения влияния электростатических помех и искажения сигнала в результате отражения линия должна быть нагружена с обоих концов согласующими резисторами. Для этого необходимо установить перемычки (джамперы) на платы оконечных устройств.

Основные требования для организации линии CAN:

• кабельные линии должны выполняться огнестойкими кабелями с медными жилами, не распространяющими горение при групповой прокладке с низким дымо- и газовыделением (нг-LSFR) или не содержащими галогенов (нг-HFFR);

- длина линии не должна превышать 100 м;
- сечение жилы от 0,35 мм² до 0,5 мм²;
- погонная ёмкость между проводами Н и L интерфейса не должна превышать 60 пФ/м.

ВАЖНО! Клеммные колодки устройства рассчитаны на сечение кабеля не более 1,5 мм².

2.4. Монтаж модуля

Произвести разметку поверхности под монтажные отверстия корпуса на выбранном месте установки изделия. Просверлить два отверстия диаметром 6 мм, глубиной 30-35 мм.

Закрепить основание корпуса модуля на поверхности при помощи дюбелей и шурупов из комплекта поставки.

ВАЖНО! Возможна установка модуля на DIN-рейку.

2.5. Световая индикация

Состояние модуля	Цвет свечения	Состояние прибора			
Нормальный режим	желтый	 - свечение после включения питания; - мигание, если система загрузилась; 			
	синий	- мигание, если приложение запущено и работает;			

Таблица 3 – Схема световой индикации модуля

Downer of your round	желтый	 - свечение после перезагрузки ПО; - мигание, если система загрузилась после перезагрузки ПО;
операционной системы	красный	- свечение, если производится запись обновления во встроенную флэш память;
	синий	- мигание, если обновление системы не производилось, приложение запущено и работает;
Режим обновления ПО	красный	 свечение после нажатия кнопок на плате и включения питания. Производится запись обновления во встроенную флэш память;
с USB-флэшки	желтый	- мигание, если система загрузилась;
	синий	- мигание, если обновление системы не производилось, приложение запущено и работает.

2.6. Режим работы портов Ethernet

Каждый интерфейс имеет следующие настройки:

- IP-адрес интерфейса;
- маска подсети;
- шлюз по умолчанию;
- IP-адрес DNS (основной и дополнительных).

IP-адрес 0.0.0.0, классически, принят за состояние «не настроено».

Если IP-адрес интерфейса не настроен, то интерфейс считается отключенным и остальные настройки игнорируются.

Если шлюз по умолчанию не настроен или указаны 0.0.0.0, то этот интерфейс сможет работать только в локальной сети (согласно маске подсети).

Если IP-адрес DNS не настроен (один или оба), то этот адрес не используется.

Режим работы: один интерфейс.

Рисунок 7 – Режим работы: один интерфейс

Если настроен только один интерфейс, то все его настройки будут фиксированно применены в системе.

МПИ будет работать только по этому сетевому интерфейсу, другой порт будет отключен.

Режим работы: два отдельных интерфейса.

Рисунок 8 – Режим работы: два отдельных интерфейса

В случае, если на двух интерфейсах настроены две непересекающиеся подсети, то интерфейсы управляются как два отдельных.

Адрес интерфейса

На каждый сетевой интерфейс настраивается свой ІР-адрес и маска подсети.

Шлюз по умолчанию

Если шлюз по умолчанию настроен только на одном интерфейсе, то он используется всегда. Если шлюз по умолчанию настроен на обоих интерфейсах:

- если оба порта видят свитч (есть линк), то приоритет отдаются шлюзу на eth0;
- если только один из портов видит свитч, а у второго линка нет, то выбран будет шлюз активного порта.

Адреса DNS

Используются адреса DNS тех сетевых интерфейсов, которые видят свитч (есть линк).

Если линк есть у обоих портов, используются сразу все адреса DNS. При этом, приоритет отдается DNS на порту **eth0**.

Режим работы: два равнозначных интерфейса.

Рисунок 9 – Режим работы: два равнозначных интерфейса

В случае, если на двух сетевых интерфейсах настроены две пересекающиеся подсети, то между интерфейсами ethl и ethl создается сетевой мост (network bridge) br0.

Побочным эффектом работы сетевого моста является то, что ядро будет перебрасывать трафик с одного порта на другой. Но в случае корректной настройки, входящий трафик будет идти одновременно по двум порта и форварда трафика не будет.

Даже в случае некорректного подключения, форвард трафика с порта на порт практически не расходует ресурсы процессора и не сказывается на функционировании МПИ. Для снижения скорости пробрасываемого трафика, включена задержка форварда с порта на порт.

Адрес интерфейса

Если оба порта настроены на один и тот же IP-адрес, то этот адрес назначается сетевому мосту **br0**.

Если настроены два различных IP-адреса, то IP-адрес интерфейса eth0 присваивается сетевому мосту br0, а IP-адрес интерфейса eth1 - на br0:1. Таким образом, МПИ будет доступен по обоим IP-адресам одновременно.

Шлюз по умолчанию

Если шлюз по умолчанию настроен только на одном интерфейсе, то он используется всегда. Если шлюз по умолчанию настроен на обоих интерфейсах:

- если оба порта видят свитч (есть линк), то приоритет отдаются шлюзу на eth0;
- если только один из портов видит свитч, а у второго линка нет, то выбран будет шлюз активного порта.

Адреса DNS

Используются адреса DNS тех сетевых интерфейсов, которые видят свитч (есть линк).

Если линк есть у обоих портов, используются сразу все адреса DNS. При этом, приоритет отдается DNS на порту eth0.

2.7. Подключение модуля к системе пожарной сигнализации

Подключение приборов приемно-контрольных: ППК-02-250, ППК-02-250 в режиме пульт, ППК-02-500 к системе ПС.

- Подключить провода интерфейса CAN к соответствующим клеммам.
- Соблюдая полярность, подключить провода основной и резервной линии питания к клеммам модуля.

ВАЖНО! При неправильном подключении возможен выход устройства из строя.

 Т1 - переключатель оконечного резистора CAN1
 Т2 - переключатель оконечного резистора CAN2

Рисунок 10 – Схема подключения интерфейса CAN и линии питания

- Установить переключатель оконечного резистора в положение «ON», если это устройство установлено последним в сети.
- Подключить кабели Ethernet через коннекторы RJ45.
- Подключить провода интерфейса CAN к другим устройствам (RA-30 и ППК), подключаемым к этой же линии (подробное описание подключения приведено в руководствах по эксплуатации на эти устройства).

Подключение прибора приемно-контрольного ППК-02-500 в режиме пульт к системе ПС.

Интерфейс RS-485 обеспечивает связь между МПИ-20 и ППК.

Следует произвести подключение интерфейса RS-485 к МПИ согласно рисунку, соблюдая полярность.

ВАЖНО! Интерфейсы RS-485 с номерами 1 и 2 функционально равнозначны. Длина линии интерфейса RS-485 между соседними устройствами не должна превышать 100 м.

ВАЖНО! Каждое устройство является повторителем интерфейса RS-485.

3. Настройка с использованием ПО Rubetek Инженер

Для подготовки настройки модуля через ПК необходимо:

- подключить к устройству питание;
- подключить устройство в локальную сеть с помощью кабеля Ethernet;
- установить программу «Rubetek Инженер» на ПК.

Для начала настройки необходимо запустить программу. После этого на экране появится окно авторизации, где необходимо ввести учетные данные устройства (логин: engineer@engineer, пароль: engineer) и нажать кнопку «Авторизоваться» (рисунок 11).

для работы с устро	иством требуется авторизация
Логин	
admin	
Пароль	
	\odot
<u></u>	
Отмена	Авторизоваться

Рисунок 11 – Авторизация в программе

Выбрать щелчком мыши систему «АПС», затем на вкладке «Подключение» ввести IP-адрес устройства и нажать «Подключиться» (рисунок 12).

Рисунок 12 – Подключение устройства

Затем необходимо перейти в раздел ПО «Управление ПИ», для этого нажать на 👜 в меню разделов в левой нижней части окна.

Открывшееся окно разделено на вкладки:

- Основные;
- MQTT;
- Ethernet;
- Связывание сетей;
- CAN.

На каждой вкладке присутствует подраздел «Прошивка преобразователя», с помощью которого на МПИ устанавливается актуальное ПО.

Вкладка «Основные»

На вкладке **Основные** (рисунок 13) расположен блок выбора режима работы ПС. При внесении изменений необходимо нажать кнопку «Сохранить» и подтвердить изменения во всплывающем окне.

Основные	MQTT	Ethernet	Связывание сетей	CAN
Основные н	астройки	1		Сохранить
Режим работы		÷	ן	
ПС 02-250				

Рисунок 13 – Вкладка «Основные»

Вкладка «MQTT»

На вкладке **MQTT** (рисунок 14) расположены настройки протокола для связи с ЮТ. В соответствующее поле следует указать хост - требуемый IP-адрес основного сервера (брокера) ЮТ. Номер порта по умолчанию – 1883. Указать имя пользователя и пароль. После ввода настроек необходимо нажать кнопку «Сохранить».

Основные	ΜΩΤΤ	Ethernet	Связывание сетей	CAN
Настройки	MQTT			Сохранить
Использова	ать MQTT			
Хост 130.193.44.15	55			
Порт 1883				
Пользователь admin				
П _{ароль} adminadmin				

Рисунок 14 – Вкладка «МQTT»

ВАЖНО! Настройки параметров «Пользователь» и «Пароль» являются индивидуальными и предоставляются управляющей компании.

Вкладка «Ethernet»

На вкладке Ethernet (рисунок 15) представлены настройки двух Ethernet-портов устройства. МПИ автоматически получает от сети статические настройки.

Для настройки сетевых настроек необходимо прописать настройки IP-адреса, маски и шлюза, а также адреса основного и резервного ДНС сервера.

ВАЖНО! *IP-адрес, маска подсети и адрес шлюза для основного и резервного портов ethernet должны быть разными.*

ВАЖНО! Если требуется использовать только один порт, то на втором следует по всем показателям выставить значение «0.0.0.0».

Основные MQTT Ethernet	Связывание сетей САN
Настройки Ethernet	Сохрани
Основной порт ethernet	Резервный порт ethernet
IP Адрес	IP Адрес
192.168.0.10	192.168.1.10
Маска подсети	Маска подсети
255.255.255.0	255.255.255.0
Адрес шлюза	Адрес шлюза
192.168.0.1	192.168.1.1
Адрес основного ДНС сервера	Адрес основного ДНС сервера
192.168.0.1	192.168.1.1
Адрес резервного ДНС сервера	Адрес резервного ДНС сервера
0.0.0.0	0.0.0.0

Рисунок 15 – Вкладка «Ethernet»

При внесении изменений необходимо нажать кнопку «Сохранить».

Вкладка «Связывание сетей»

ВАЖНО! Данная настройка актуальна только для прибора приемно-контрольного ППК-02-250.

На вкладке **Связывание сетей** (рисунок 16) выполняется настройка обмена данных между группами. Данная функция занимает 16 последовательных адресов начиная с адреса, указанного как Базовый адрес в сети CAN. Базовый адрес в сети CAN не должен превышать 234, для размещения 16 виртуальных адресов с 234 по 249.

Основные	MQTT	Ethernet	Связывание сетей	CAN	
Связывание	сетей			Сох	ранить
Название устрой	іства				
Alarm					
Идентификатор	сети				
Network					
Базовый адрес в	сети CAN				
200					
Группы в сети (CAN				
🔽 Группа 0					
🖌 Группа 1					
🔵 Группа 2					
🥑 Группа 3					
🥑 Группа 4					
🥑 Группа 5					
🕗 Группа 6					
Группа 7					
🥑 Группа 8					
🥑 Группа 9					
🕗 Группа 10					
🕗 Группа 11					
Группа 12					
🕗 Группа 13					
🧹 Группа 14					
🥑 Группа 15					

Рисунок 16 – Вкладка «Связывание сетей»

В поле «Связывание сетей» производится выбор групп, от которых будет производится передача данных.

Поле «Название устройства» предназначено для ввода имени CAN сети виртуального ППК, от которого будут приходить сообщения о состоянии ПС.

Поле «Идентификатор сети» необходимо для передачи данных о состоянии групп ППК между несколькими МПИ в одной локальной сети.

ВАЖНО! Передача данных будет осуществляться только между МПИ с одинаковыми идентификаторами. В качестве идентификаторов допускается использовать буквы английского алфавита А...Z, а...z, цифры 0...9, специальные символы @, #, \$, %, &, *.

()

ВАЖНО! Идентификатор сети должен полностью совпадать. Например, между МПИ с идентификатором «А0№» и МПИ с идентификатором «а0№» передача данных не будет осуществляться.

Поле «Базовый адрес в сети CAN» предназначено для ввода CAN адреса, с которого начнется создание виртуальных ППК.

ВАЖНО! Выбрать группы, в которых находятся ППК в указанных CAN сетях, и установить эти группы в принимаемых группах на самих ППК.

Пример: На ППК №1 выставлена группа 4, а на ППК №2, который подключен к другому МПИ в локальной сети установлено получение сигналов пожар/неисправность/событие от группы 4. Необходимо на МПИ, в которой находится ППК №2 активировать группу 4 в настройках

Связывание сетей. Это позволит второму МПИ создавать виртуальный ППК с группой 4 и передавать информацию для ППК №2 от ППК №1, находящегося на другом МПИ в локальной сети.

При внесении изменений необходимо нажать кнопку «Сохранить».

Вкладка «CAN»

ВАЖНО! Данная настройка актуальна только для прибора приемно-контрольного ППК-02-500.

На вкладке **CAN** расположена настройка ключа сети для доступа к сети CAN (рисунок 17). При внесении изменений необходимо нажать кнопку «Сохранить».

ВАЖНО! Подробный алгоритм настройки ключа сети описан в руководстве по эксплуатации к прибору приемно-контрольному.

МПИ в режиме клиента устанавливается на объекте, на котором развернута АПС. МПИ в режиме сервер устанавливается в ОДС и собирает данные от МПИ в режиме клиента.

Основные	MQTT	Ethernet	Связывание сетей	CAN	
- Настройки	CAN				

Рисунок 17 – Вкладка «САМ»

ВАЖНО! ППК в режиме «Пульт» подключается к МПИ с соответствующим режимом, а корпусные ППК взаимодействуют с МПИ в обычном режиме соответственно. (Например, если к МПИ подключить ППК-02-250, то в настройках МПИ необходимо выбрать режим ПС 02-250, если подключить «ППК-02-250 в режиме Пульт», то в настройках МПИ следует выбрать режим «ППК-пульт 02-250»).

4. Обновление ПО ПИ

Обновление ПО осуществляется по Ethernet. Для обновления ПО необходимо выбрать файл прошивки нажав кнопку **Выбрать**, после чего указать путь к файлу, выбрать необходимый файл и нажать кнопку **Открыть**. После этого нажать кнопку **Прошить**. Будет запущен процесс прошивки. После успешной прошивки устройства, необходимо произвести повторное подключение к нему.

ВАЖНО! Версию актуального программное обеспечение можно скачать на официальном сайте компании «RUBETEK».

Выбрать

Рисунок 18 – Раздел Прошивка преобразователя

После успешного обновления прошивки устройство перезапустится. Чтобы продолжить работу, потребуется повторно подключиться к устройству.

5. Техническое обслуживание

- 5.1. Меры безопасности
- 5.1.1. При эксплуатации модуля необходимо руководствоваться РД 78.145-93 «Системы и комплексы охранной, пожарной и охранно-пожарной сигнализации. Правила производства и приемки работ» и требованиями настоящего руководства.
- 5.1.2. При проведении ремонтных работ в помещении, где установлен Модуль, должна быть обеспечена защита от механических повреждений и попадания на него строительных материалов (побелка, краска, пыль и пр.).
- 5.2. Проверка работоспособности
- 5.2.1. Проверка работоспособности модуля должна проводиться при плановых или других проверках технического состояния модуля, но не реже одного раза в 6 месяцев.
- 5.2.2. Проверка работоспособности модуля включает в себя:
 - Внешний осмотр модуля.
 - Проверку надёжности контакта с подключенными проводами. При необходимости подтянуть винты клеммников и заменить неисправные провода.

6. Хранение

- 6.1. Условия хранения модуля должны соответствовать условиям 1 (Л) по ГОСТ 15150-69:
 - температура окружающего воздуха от +5 °C до +40 °C;
 - относительная влажность воздуха до 80 % при температуре +25 °C.
- 6.2. Хранить Модуль следует на стеллажах в упакованном виде.
- 6.3. Расстояние от стен и пола хранилища до упаковки с преобразователем должно быть не менее 0,1 м.
- 6.4. Расстояние между отопительными устройствами и упаковкой с преобразователем должно быть не менее 0,5 м.
- 6.5. В помещении должны отсутствовать пары агрессивных веществ и токопроводящая пыль.

7. Транспортирование

- 7.1. Модуль в упаковке может транспортироваться всеми видами транспорта в крытых транспортных средствах и в герметизированных отсеках самолета.
- 7.2. Условия транспортирования должны соответствовать условиям 5 (ОЖ4) по ГОСТ 15150-69:
 - температура окружающего воздуха от -50 °C до +50 °C;
 - относительная влажность воздуха до 95 % при температуре +40 °C.
- 7.3. Срок транспортирования и промежуточного хранения не должен превышать 3 мес. Допускается увеличивать срок транспортирования и промежуточного хранения модуля при

перевозках за счет сроков сохраняемости в стационарных условиях.

8. Утилизация

- 8.1. Все материалы, используемые в преобразователе, не представляют опасности для жизни, здоровья людей и окружающей среды. После окончания эксплуатации они должны быть утилизированы в соответствии с действующими правилами.
- 8.2. Содержание драгоценных материалов не требует учета при хранении, списании, утилизации.

9. Гарантия изготовителя

- 9.1. Предприятие-изготовитель гарантирует соответствие модуля заявленным техническим характеристикам при условии соблюдения потребителем правил транспортирования, хранения, монтажа и эксплуатации.
- 9.2. Гарантийный срок эксплуатации составляет 12 месяцев со дня ввода в эксплуатацию, но не более 24 месяцев со дня выпуска.
- 9.3. В течение гарантийного срока замена вышедших из строя преобразователей осуществляется предприятием-изготовителем безвозмездно при соблюдении потребителем указаний по монтажу и эксплуатации.
- 9.4. При направлении модуля в ремонт к нему обязательно должен быть приложен акт с описанием неисправностей.
- 9.5. Гарантия не вступает в силу в следующих случаях:
 - несоблюдение данной инструкции;
 - механическое повреждение модуля;
 - ремонт модуля другим лицом, кроме Изготовителя.
- 9.6. Гарантия распространяется только на Модуль. На всё прочее оборудование, использующееся совместно с преобразователем, распространяются его собственные гарантии.

10. Сведения о рекламациях

- 10.1. Рекламационные претензии предъявляются предприятию-поставщику в случае выявления дефектов и неисправностей, ведущих к выходу из строя модуля ранее гарантийного срока.
- 10.2. В рекламационном акте указать: тип устройства, дефекты и неисправности, условия, при которых они выявлены, время с начала эксплуатации модуля.
- 10.3. К акту необходимо приложить копию платежного документа на Модуль.

11. Сведения о сертификации

11.1. Модуль преобразования интерфейсов МПИ-20 «RUBETEK» соответствует требованиям технических регламентов и имеет сертификат соответствия № RU C-RU.ПБ68.В.01099/22, выданный органом по сертификации Общество с ограниченной ответственностью «Пожарная Сертификационная Компания» (ОС ООО «ПСК).

12. Сведения о производителе

- 12.1. Наименование организации производителя: ООО «ЗАВОД ПРИБОРОВ»
- 12.2. Юридический адрес: 302026, Орловская Область, г. Орёл, ул. Комсомольская, д. 102А, помещ. 1
- 12.3. Телефон: +7 (4862) 51-10-91
- 12.4. Электронная почта: info@zavodpriborov.com

13. Сведения о поставщике

- 13.1. Наименование организации поставщика: ООО «РУБЕТЕК РУС»
- 13.2. Юридический адрес: 121205, г. Москва, территория инновационного центра «Сколково», Большой бульвар, д. 42, стр. 1, 1 этаж, часть помещения №334, рабочее место №31
- 13.3. Телефон: +7 (495) 430-08-76; 8-800-777-53-73
- 13.4. Электронная почта: support@rubetek.com
- 13.5. Сайт: https://rubetek.com/